Preparation and Characterization of Triethylenetetramine Cobalt(III) Complexes with 1,2-Ethanedithiolate or 1,2-Ethanedisulfinate

Takumi Konno,* Hideki Uменака, Ken-ichi Окамото, and Jinsai Нідака Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305 (Received April 14, 1989)

Synopsis. Triethylenetetramine (trien) cobalt(III) complexes with 1,2-ethanedithiolate (edt) or 1,2-ethanedisulfinate (edsi) were prepared and characterized by absorption, CD, and ¹³C NMR spectra. Each of the two complexes gave three possible geometrical isomers (cis- α , cis- β -RR,SS, and $cis-\beta-RS,SR$) which were separated and optically resolved by fractional crystallization and/or column chromatography.

In a previous paper¹⁾ we reported the stereochemistry of triethylenetetramine (trien) cobalt(III) complexes with 1,3-propanedithiolate (pdt; $^-S(CH_2)_3S^-$) or 1,3propanedisulfinate (pdsi; -O₂S(CH₂)₃SO₂-). complexes produced only the cis- α isomer, although three geometrical isomers (cis- α , cis- β -RR,SS, and cis- β -RS,SR)²⁾ are possible for the [Co(bidentate-S,S)-(trien)]+-type complexes. This note discusses the preparation and resolution of the trien cobalt(III) complexes with 1,2-ethanedithiolate (edt; -S(CH₂)₂S⁻) or 1,2-ethanedisulfinate (edsi; $-O_2S(CH_2)_2SO_2^-$); three possible geometrical isomers were formed for each of the two complexes. These isomers were characterized on the basis of absorption, CD, and ¹³C NMR spectra compared with those of the corresponding pdt and pdsi isomers.

Experimental

(1) Preparation and Resolution of Complexes. a) [Co-(edt)(trien)]X (X=ClO₄ and I). To an ice-cold solution containing 3.1 g (0.01 mol) of $cis-\alpha$ - or $cis-\beta$ -[CoCl₂(trien)]-Cl3) in 60 cm3 of water was added an ice-cold solution containing 0.95 g (0.01 mol) of 1,3-propanedithiol in a mixture of a 1 mol dm⁻³ NaOH aqueous solution (20 cm³) and methanol (20 cm³). The mixture was stirred for 1 h in an ice bath. After removing the precipitate by filtration, to the filtrate was added 20 cm3 of a saturated NaClO4 solution; this mixture was kept in a refrigerator for 5 h. The precipitate which appeared was filtered off again. The filtrate was concentrated to one half its volume with a rotary evaporator below 25 °C and kept in a refrigerator overnight. resulting black complex was collected by filtration and recrystallized from a small amount of water. It was found from absorption and 13C NMR spectral measurements that this complex contained a mixture of $cis-\alpha$ -, $cis-\beta$ -RR,SS-, and cis-β-RS,SR-[Co(edt)(trien)]⁺. Attempts to separate the isomers using column chromatography were unsuccessful because of decomposition in the column. Yield: 64%. Found: C, 23.96; H, 5.63; N, 14.07%. Calcd for [Co(edt)(trien)]ClO₄= C₈H₂₂N₄O₄S₂ClCo: C, 24.22; H, 5.59; N, 14.12%.

The iodide salt was precipitated using 20 cm³ of a saturated NaI solution instead of a saturated NaClO₄ Black tetragonal crystals were obtained by recrystallization from a small amount of water. It was found from absorption and 13C NMR spectral measurements that these crystals contained only the cis-α isomer. Yield: 20%. Found: C, 22.61; H, 5.27; N, 13.22%. Calcd for [Co(edt)-(trien)] I=C₈H₂₂N₄S₂CoI: C, 22.64; H, 5.22; N, 13.20%

An excess amount (0.5 g) of $Na_2[Sb_2(d-tart)_2] \cdot 5H_2O$ (d-

tart=d-tartrate) was added with stirring to a solution containing 0.1 g of cis-α-[Co(edt)(trien)]I in 10 cm³ of water. After the solution was stirred for 3 min at room temperature, 3 cm³ of ethanol was added in an ice bath; the resulting black-brown precipitate of the $(-)_{580}^{CD}$ -cis- α isomer was collected by filtration. The H₂O₂ oxidation product of the $(-)_{580}^{CD}$ -cis- α showed identical absorption spectrum and CD patterns with $(-)_{460}^{CD}$ -cis- α -[Co(edsi)(trien)]⁺ (A-2 isomer) described in b), though the CD intensity of the former complex was smaller than that of the latter. This indicates that cis-α-[Co(edt)(trien)]⁺ was partially resolved; the CD intensity of the $(-)_{580}^{CD}$ -cis- α isomer is shown by an arbitrary scale in Fig. 1.

[Co(edsi)(trien)]ClO₄. An excess amount (8 cm³) of a 5% H₂O₂ solution was added to a solution containing 0.5 g of [Co(edt)(trien)]ClO₄ in 20 cm³ of water, followed by 1 cm³ of a 30% HClO₄ solution. The mixture was stirred for 1 h in an ice bath and then kept in a refrigerator overnight. The resulting yellow powder (A-1) was collected by filtration. The filtrate was concentrated to one half its volume with a rotary evaporator below 24°C and kept in a refrigerator overnight. After the yellow powder (A-1) was again removed by filtration, the filtrate was concentrated to one half its volume and kept in a refrigerator overnight. The deepyellow needle crystals (A-2) which appeared were collected by filtration. Each of the A-1 and A-2 complexes was recrystallized from a small amount of water. It was found from the absorption and ¹³C NMR spectral measurements that the A-1 complex contained a mixture of cis-\beta-RR,SSand $cis-\beta-RS$, SR-[Co(edsi)(trien)]⁺ and the A-2 one contained the cis- α isomer. A-1 complex: Yield: 28%. A-2 complex: Yield: 13%. Found for A-2: C, 20.15; H, 5.03; N, 11.65%. Calcd for $[Co(edsi)(trien)]ClO_4 \cdot H_2O = C_8H_{22}N_4O_8S_2ClCo$. H₂O: C, 20.07; H, 5.05; N, 11.70%.

An aqueous solution of the A-1 complex (cis- β -RR,SS and cis-β-RS,SR) was poured onto a Dowex 50W-X8 column $(Na^+ \text{ form}, 200-400 \text{ mesh}, 3 \text{ cm} \times 20 \text{ cm})$. After sweeping the column with water, the adsorbed band was eluted with a $0.075 \text{ mol dm}^{-3} \text{ K}_2[\text{Sb}_2(d\text{-tart})_2] \text{ solution.}$ Two pairs of yellow bands, B-1 and B-2, were eluted in this order. It was found from the ¹³C NMR spectral measurements that the earlier moving pair (B-1) contained cis-β-RR,SS-[Co(edsi)-(trien)]⁺ and the later moving one (B-2) contained the cis- β -RS,SR isomer. The formation ratio of the two isomers, B-1 (cis- β -RR,SS): B-2 (cis- β -RS,SR), was about 4:1. For each of the two pairs, the earlier moving and the later moving bands contained the $(-)_{470}^{CD}$ and $(+)_{470}^{CD}$ isomers respectively. The $(-)_{470}^{CD}$ isomer of B-1 (cis- β -RR,SS) was isolated as the perchlorate salt. The B-2 (cis- β -RS,SR) isomer was not isolated because of its poor yield, and the concentration of this isomer was evaluated by the method of plasma emission spectral analysis. Found for (-)^{CD}₄₇₀ B-1 isomer: C, 20.12; H, 5.06; N, 11.68%. Calcd for [Co(edsi)(trien)]ClO₄·H₂O: C, 20.07; H, 5.07; N, 11.70%.

When the A-2 (cis- α) complex was chromatographed on a Dowex 50W-X8 column (Na⁺ form, 200—400 mesh, 3.0 cm× 20 cm) eluting with a 0.075 mol dm⁻³ K₂[Sb₂(d-tart)₂] solution, two deep yellow bands of the $(-)_{460}^{CD}$ and $(+)_{460}^{CD}$ isomers were eluted in this order. Each eluate was converted into the perchlorate salt using a QAE-Sephadex A-25 column (ClO₄⁻

form, 2.5 cm×20 cm). The concentration of each isomer was evaluated on the basis of the absorption spectral datum of the racemic perchlorate salt.

(2) Measurements. The electronic absorption spectra were recorded on a JASCO UVIDEC-1 or UVIDEC-610 spectrophotometer and the CD spectra on a JASCO J-20 spectropolarimeter. All measurements were carried out in aqueous solution at room temperature. The concentration of *cis-β-RS,SR-*[Co(edsi)(trien)][†] (B-2 isomer) was determined with a Jarrel-Ash Model-975 Plasma Atom Comp ICP spectrometer. The ¹³C NMR spectra were recorded in deuterium oxide on a JEOL JNM-FX-100 NMR spectrometer at the probe temperature. Sodium 4,4-dimethyl-4-silapentanel-sulfonate was used as an internal reference.

Results and Discussion

Three geometrical isomers (cis- α , cis- β -RR,SS, and $cis-\beta-RS,SR)^{(2)}$ are possible for each of [Co(edt)(trien)]⁺ and [Co(edsi)(trien)]⁺. The absorption spectrum of [Co(edt)(trien)]⁺ isolated as the perchlorate or iodide salt is similar to that of $cis-\alpha-[Co(pdt)(trien)]^{+1}$ in the whole region (Fig. 1). The edt complex exhibits the sulfur-to-metal charge transfer (SMCT) band at ca. 35×10³ cm⁻¹, which is composed of two components. This absorption spectral behavior is characteristic for the cis(S)-type cobalt(III) complexes with two thiolato donor atoms.4-7) For the three isomers of [Co(edsi)-(trien)]+, which were derived from the perchlorate salt of [Co(edt)(trien)]+ by the H2O2 oxidation reaction, the absorption spectral behavior agrees well with that of $cis-\alpha$ -[Co(pdsi)(trien)]^{+ 1)} in the whole region (Fig. 2). It has been established by X-ray structural analysis that the pdsi in cis-α-[Co(pdsi)(trien)]⁺ coordinates through two sulfur atoms.¹⁾ Accordingly, the present edsi complex can be assigned to the S,S-bonded isomer having the cis(S) geometry. The absorption spectrum of the edsi complex also shows an intense SMCT band consisting of two components at ca. 34×10³ cm⁻¹.

The iodide salt of [Co(edt)(trien)]⁺ exhibits four ¹³C NMR signals at δ 36.84, 46.54, 57.86, and 58.83 due to the eight methylene carbon atoms in the complex, indicating the C2 symmetry. Further, the H2O2 oxidation of the iodide salt gave $cis-\alpha$ -[Co(edsi)(trien)]⁺ (A-2 complex, vide infra). A similar oxidation reaction of the thiolato cobalt(III) complexes has proceeded with retention of the geometrical configuration to form the sulfinato complexes.1,8) These facts suggest that the iodide salt of $[Co(edt) trien)]^+$ is the cis- α isomer. The perchlorate salt of [Co(edt)(trien)]+ shows twenty ¹³C NMR signals in the region of δ 35–60, of which four signals are the same as those of the iodide salt. The H₂O₂ oxidation of the perchlorate salt produced $cis-\alpha-$, $cis-\beta-RR$, SS-, and $cis-\beta-RS$, SR-[Co(edsi)(trien)]⁺ (vide infra). Therefore, it is probable that the perchlorate salt of $[Co(edt)(trien)]^+$ is a mixture of the cis- α , cis- β -RR,SS, and cis- β -RS,SR isomers. In the ¹³C NMR spectra of [Co(edsi)(trien)]⁺ containing eight methylene carbon atoms, the A-1 and A-2 complexes exhibit fifteen and four (δ 45.61, 45.72, 58.78, and 59.65) signals respectively. The A-1 complex was separated into two isomers, B-1 and B-2, which show eight ¹³C NMR signals (δ 43.83, 50.44, 51.68, 52.33, 56.12, 57.53, 58.40, and 60.68 for B-1, and δ 45.13, 47.84,

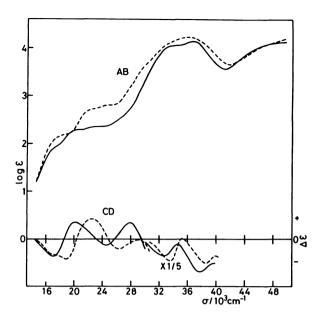


Fig. 1. Absorption and CD spectra of Δ -(-) $^{cgo}_{SO}$ -cis- α -[Co(edt)(trien)]⁺ (---) and Δ -cis- α -[Co(pdt)(trien)]⁺ (----). CD scale is arbitrary.

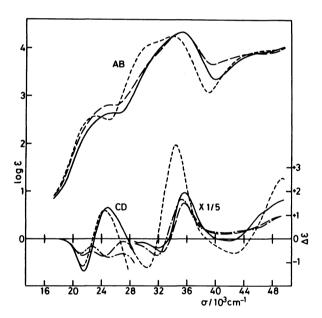


Fig. 2. Absorption and CD spectra of Δ -(-) $^{CD}_{470}$ cis- α -(-), Δ -(-) $^{CD}_{470}$ cis- β -RR- (-), Δ -(-) $^{CD}_{470}$ cis- β -RS- [Co(edsi)(trien)]⁺ (----), and Δ -cis- α -[Co(pdsi)-(trien)]⁺ (----).

53.09, 53.20, 57.26, 59.43, 59.70, and 60.68 for B-2). These results indicate that the A-1 complex is a mixture of the cis- β -RR,SS and cis- β -RS,SR isomers (C₁ symmetry), while the A-2 complex is the cis- α isomer (C₂ symmetry). The ¹³C NMR signals of the B-1 isomer appear at higher magnetic fields than those of the B-2 isomer. For [Co(NH₃)₂(trien)]³⁺⁹⁾ and [Co(CN)₂(trien)]^{+,10)} the cis- β -RR,SS isomer commonly shows ¹³C NMR signals at higher magnetic fields than those of the cis- β -RS,SR isomer. Therefore, it is tentatively assigned that the B-1 and B-2 isomers take

the cis- β -RR,SS and cis- β -RS,SR configurations respectively. The assignment for the two cis- β isomers is supported from a 4:1 formation ratio of the RR,SS (B-1) isomer to the RS,SR (B-2) isomer, which is an usual trend observed for $[CoX_2(trien)]^{n+}$ ($X_2=NH_2CH_2-CO_2^{-11}$) $2NH_3$, 9 $2CN^{-10}$ and $2NCS^{-12}$).

As shown in Fig. 2, the CD spectrum of $(-)_{460}^{CD}$ -cis- α - $[Co(edsi)(trien)]^+$ is similar to that of Δ -cis- α -[Co(pdsi)-(trien)]⁺ over the whole region, whose absolute configuration has been determined by X-ray structural analysis.¹⁾ Therefore, the $(-)_{460}^{CD}$ -cis- α edsi isomer is assignable to the \(\Delta \) configuration. The CD spectra of $(-)_{470}^{CD}$ -cis- β -RR,SS- and $(-)_{470}^{CD}$ -cis- β -RS,SR-[Co(edsi)-(trien)]+ quite resemble each other, showing the two negative CD bands in the first absorption band region (18-28×103 cm⁻¹) and a negative and a positive band from lower energy in the SMCT band region (28- 38×10^3 cm⁻¹) (Fig. 2). This CD spectral pattern is the same as that of Δ -(-)^{CD}₄₆₀-cis- α -[Co(edsi)(trien)]⁺, except for some deviation at the higher-energy side in the first absorption band region, suggesting that the two $(-)^{CD}_{470}$ -cis- β edsi isomers also take the Δ configuration $(\Delta$ -cis- β -RR and Δ -cis- β -RS). The CD spectrum of $(-)_{580}^{\text{CD}}$ -cis- α -[Co(edt)(trien)]⁺ is similar to that of Δ -cisα-[Co(pdt)(trien)]^{+ i)} in the SMCT band regions (30— 40×10³ cm⁻¹), although the intensities are shown by an arbitrary scale (Fig. 1). Furthermore, the oxidation product of $(-)_{500}^{CD}$ -cis- α -[Co(edt)(trien)]⁺ showed an identical CD pattern with that of Δ -cis- α -[Co(edsi)-

(trien)]⁺. Accordingly, it is reasonable to assign that the $(-)_{580}^{CD}$ -cis- α edt isomer takes the Δ configuration.

References

therein.

- 1) K. Okamoto, H. Umehara, and J. Hidaka, *Bull. Chem. Soc. Jpn.*, **60**, 2875 (1987).
- 2) D. P. Schaefer and G. R. Brubaker, *Inorg. Chem.*, **8**, 1794 (1969).
- 3) A. M. Sargeson and G. H. Seale, *Inorg. Chem.*, **6**, 787 (1967).
- 4) K. Wakayama, K. Okamoto, H. Einaga, and J. Hidaka, Bull. Chem. Soc. Jpn., 56, 1995 (1983).
- 5) K. Okamoto, K. Wakayama, H. Einaga, S. Yamada, and J. Hidaka, Bull. Chem. Soc. Ipn., 56, 165 (1983).
- 6) K. Yamanari, N. Takeshita, and Y. Shimura, Bull. Chem. Soc. Jpn., 57, 1227 (1984).
- 7) K. Yamanari, N. Takeshita, and Y. Shimura, Bull.
- Chem. Soc. Jpn., 57, 2852 (1984).

 8) T. Konno, K. Okamoto, H. Einaga, and J. Hidaka, Bull. Chem. Soc. Jpn., 58, 1119 (1985), and references sited
- 9) S. Utsuno, Y. Yoshikawa, and Y. Tahata, *Inorg. Chem.*, **24**, 2724 (1985).
- 10) Y. Nokami, M. Irimichi, Y. Tahata, and S. Utsuno, presented at the 31st symposium on the Coordination Chemistry of Japan, Sendai, 1981, Abstract No. 3B14.
- 11) D. A. Buckingham, M. Dwyer, G. J. Gainford, V. J. Ho, L. G. Marjilli, W. T. Robinson, A. W. Sargeson, and K. R. Turnbull, *Inorg. Chem.*, 14, 1739 (1975).
- 12) Y. Sakai, Y. Nokami, H. Kanno, and S. Utsuno, *Chem. Lett.*, **1981**, 371.